
SERIES SOLUTION FOR HEAT TRANSFER THROUGH 
A TURBULENT BOUNDARY LAYER 

E. BAKER 

~epar~ent of Mechanical ~n~n~rin~, Imperial College of Science and Technology, London 

Abstract-A series solution has been found to the parabolic par&d di~erent~al equation goofing heat 
transfer from a smmth wall into a steady, uu~fo~-pru~~y turb&ent boundary layer. The s&tion is 
valid for the initial portion of the wall immediately downstream of a step-wise discontinuity in wall tem- 
perature. The differentiaf equation represents the temperature distribution in a kid, with Prandtl number 
greater than O-5, when a universal velocity profile exists in the fluid wherever the temperature gradient is 
appreciable. To obtain a series solution to the differential equation, the diffusivities of heat and momentum 
were each expressed in the form of a power series in u+. A general form was used for the power series 
which can be easily modified to At many of the diffusivity profiles recommended in the literature. As an 
example of this flexibility, computations were made (for several Prandtl numbers) for three commonly- 
used diffusi~ty profiles. Same of the coefficients of u+ in the diffusivity power series have been deduced by 

compa~son of the solutions of the di~erential equation with recently published ex~~mental data. 
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shear stress in boundary layer 

[kg/mh’] ; 
dimensionless form of temperature 
(equation I-10). 

Subscripts 

G, refers to conditions in bulk of fluid 
stream ; 

S, refers to conditions in fluid immedi- 
ately at the wall. 

1. INTRODUCTION 

1.1 The Problem 
THE PRIMARY purpose of this paper is to de- 
velop an exact analytic expression for the heat 
transfer from an isothermal spanwise strip on a 
smooth wall to a steady, uniform-property 
stream ; a universal velocity profile is assumed to 
exist everywhere in the fluid where the tempera- 
ture gradient is appreciable. A series method of 
solution is used. The expression obtained by this 
method for the local heat transfer depends on the 
relationships which are postulated between the 
velocity, and the eddy diffusivities of heat and 
momentum. Use of specific forms of these rela- 
tionships in the analysis, followed by compari- 
sons of the final solutions with experimental 
data, permits information about the correct 
forms of the diffusivity relationships to be ob- 
tained. 

1.2 Description of Basic Equations 
used in the Analysis 

1.2.1 The parabolic partial differential equation 
The parabolic partial differential equation 

governing the temperature near the wall in a 
turbulent boundary layer was shown in refer- 
ence [l] to be : 

(1) 

where u+, x’, E:, &h+, and 0 are respectively the 
dimensionless measures of: velocity, distance 
along the wall, effective viscosity, effective con- 

ductivity, and temperature. In developing equa- 
tion (l), it was necessary to assume that a uni- 
versal velocity profile existed at all points in the 
fluid where the temperature gradient was appre- 
ciable. 

1.2.2 The diffusivity profiles 
1.2.2.1 Generalfirm. For the method of solu- 

tion of equation (1) used in this paper, it is 
necessary to assume that the diffusivities of 
momentum and heat can be expressed as a power 
series in u + . Specifically, 

s: = 1 + ab (u’)” + . . . + abtk (u+)~+~ 

+ . . . . (2) 

1 
&h+ =-+ L{E: - 1) 

NP, N~r.t 

where the ab+k terms are constants, any of which 
may be zero. 

Hinze [2] reported that Reichardt [3] and 
Elrod [4] showed there are theoretical reasons 
against b in equation (2) being less than three if 
the shear stress varies along the wall, and four 
if there is no such variation. For this reason the 
minimum value of b used in this study will be 
three. 

1.2.2.2 Spalding’s dflisivity profiles. Two eddy 
diffusivity profiles were suggested in reference 
[5], one for a value of b in equation (2) of 3, and 
the other for b = 4. For b = 4, the recommended 
profile was 

EL = 
l  + 5 w+14 

E 7 + ... 

(N = 4, 5, 6,. .) (4) 

For b = 3, the eddy diffusivity profile recom- 
mended in reference [5] was : 

E: = 1 + K w+)3 ___ 
E 3! 

+ . 

(Ku+)~ 
+--- N! (Iv = 3,4, 5,. . .) (5) 

In equations (4) and (5) K is a constant, usually 
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taken to be about 0.4. E is another constant These conditions reduce the problem to the one 
having a value of the order of magnitude of 10. first solved by Leveque [8]. In terms of the S- 

1.2.2.3 Deissler’s diffusivity profile. In reference function the LevCque solution is : 
[6] Deissler defines a velocity profile by means 

s = 0.53835 $- 
( > 

-l/3 
of an integral equation (11) 
n+ = 

PI 

Yf 

s 

dy+ 
The second asymptote is valid for large values 

1 + n%+y+(l - exp [-n2u+y+]) 
(6) of x+ and large Prandtl numbers. Deissler [6] 

0 
gave a form of this solution which fitted his par- 
titular eddy diffusivity profile. In terms of the 

where the recommended value of n is 0.124. This S-function, Deissler’s solution is : 
equation can be integrated to give a power series 
in u+. S = 0.1116 N;14. (12) 

n4(u+)5 n6(u+)’ 

y+=“++-Y---- 14 

This solution was generalized in reference [9], 
and gives 

+ * n8(u+)9 - . . . (7) 

Equation (7) can now be differentiated to 
give a diffusivity profile in the form of a power 
series in u+ (since E: = dy+/du+). This expres- 
sion is : 

4 = 1 + (nu+)4 - &u+)6 

+ &m+)’ - . . . . (8) 

1.2.3 The boundary conditions 
The boundary conditions on equation (1) for 

our problem are : 

0=0 at u+=O and all x+ 
8=1 at u+>O and x+ = 0 (9) 
8 = 1 at uf = ud and x+ > 0 1 

We shall be particularly concerned with the 
prediction of local surface heat-transfer rates; 
these may be connected with the solution of 
&x’, u’) via the S-function [l, 71 which is 
defined by : 

(10) 

1.3 Relation to Previous Work 
The solution of the problem considered in 

this paper has two asymptotes. The first is valid 
for small x+ where all changes in the tempera- 
ture profile are confined to the laminar sub-layer. 

(13) 

where ab and b are from equation (2). 
Gardner and Kestin [7] solved equation (1) 

on a digital computer for the constant wall 
temperature case using the Schmidt method of 
step-by-step integration. Their solutions were 
for the eddy diffusivity profile of equation (4) 
with values of K and E of O-4 and 9.025 re- 
spectively. They presented numerical results for 
Prandtl numbers of 0.71,1,7,30, 100 and 1000. 

2. METHOD OF SOLUTION 

2.1 Dejinitions 
Let 

y = ai’b(u+)b 

Fb+k s ab+J[abb+k)‘b] (k = 0, 1, 2, 

i.e. 

F, = 1 

AEN,, 
N Pr, f 

z*x+ 
N PI, f 

2.2 Modification of equation (1) 
With the definitions given above, equation (1) 

(16) 

(17) 

(18) 
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can be modified to 

+ [&A - 1) yb-’ + Fbfl(b + 1) 1 

x (A - 1) yb + . . . 
f?e I-ii %J 

Let us now suppose that 0 can be expressed in 
the form of a series, 

H 3 00 + 1 0” 2” (20) 
n>ll 

where the 8,‘s are all functions of v only, where 
v z @4’3 

(21) 

then equation (19) becomes a total differential 
equation : 

v z n 8, z” = [l + (A - 2) Vb Zb’3 
” 
f Fb+ I(/! - 2) vb+ lZta+ 1)‘3 + . , .] 

x [sb: + c e;zq + 
i 
(22) n 

x i’b-‘zb’3 + Fb+l(b + l)(A - 1) 

x VbZ@+1)‘3 + . . 
1 

[PO -I- t: &Z”] 
” ! 

The prime in this equation stands for dif- 
ferentiation with respect to v. 

equation (22) can be solved by the method of 
equating coefficients. 

The boundary conditions for equation (22) 
are : 

f?=O at v=O 

1 
(23) 

Q--+1 as v-+co 

2.2.1 Ck$,?kient of Z”. For this term, equation 
(22) becomes : 

eb’ i- ; e. = 0. (24) 

This equation can be solved exactly, and gives 

B. = C [ [exp { -v3/9}] dv + B. (25) 
0 

From the boundary conditions (23), B is zero, 
and 

C== 
1 

= Q53835. (26) 
d exp [ -v”/9] dv 

Therefore, 

t$ = O-53835 exp [I-v”/9]. (27) 

This is the Leveque solution referred to above. 

2.2.2 Other coefficients. The boundary con- 
ditions on f3,, for non-zero values of n, become 

B,=O at v=O 

> 
(28) 

@,+O as v+m 

It can be shown that the only values of n for 
which 8, and all of its derivatives are not zero, 
are 

b b+k 
n = 0, -, ‘ . ., -, . . . . 

3 3 

(k = 0, 1, 2, 3, . . . .) (29) 

Thus, from equation (19), the series expansion 
for 8 becomes 

B = 80 + 0 
b/3 

zh’3 i- . . . + 8 
(b+k)l3 

z@+W3 

+ . . (30) 

and from equation (9) 

-I- . . . + @;b+kf,3 
Z(bfW3 dv 

du+ 
+ . . . . (31) 

u+=o 

The details of the method used to determine the 
values of 19;~ + kj,3 are given in the Appendix. 

3. RESULTS 

Equations in the form of equations (I-10) and 
(I-11) were solved on a digital computer using 
step-by-step integration and the results were 
checked by repeating the calculations with halved 
steps. 

3.1 Case where b = 4 in Equation (2) 
For this case the first eight terms of the series 
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solution for S(x+, NPI, NP,,l) were found to be : 

- a;[0*799 (A - 2)2 + 1.514 (A - 2) + 0.244 (A - 1) + 0.50186 {&(A - 2) - (2A 
7/3 

8’3 - 10.8948 (F, - l)(A - l)] - (~,)“~(2*7247) A2F, 

3)) 
- 

11/3 

+ higher order terms (32) 

where the values of u4, F,, F,, and F, [defined 
by equations (2), (15) and (16)] are dependent 
upon the particular eddy diffusivity profile 
used. The halved-step check indicated that the 
0.244 (A - 1) term contained in the coefficient 
of the (x’/N,,)~‘~ term of equation (32) was only 
accurate to two per cent. Since this term is small 
for large A (i.e. large NPI/NPI,l), the calculations 
were continued giving the coefhcients for 
@+/Np,) to the 813,913, and 1 l/3 powers. These 
coefficients are strictly valid for large Prandtl 
numbers only. 

3.1.1 Wues of the constants in equation (32) fir 
various diflusivity profiles 

3.1.1.1 Dijhivity profile ofequation (4). Gard- 
ner and Kestin [7] used the diffusivity profile of 
equation (4) with values of K and E equal to 0.4 
and 9.025 respectively ; for comparison, the same 
values will be used here. These, with equations 
(2), (15) and (16), imply: 

b = 4; u4 = 4.73 x 10-5; F, = 0.965; 

F, = 0.776; F, = 0.322 (33) 

The S-function obtained by using these constants 
in equation (32) is shown in Fig. l* for several 

* In all of the figures the turbulent Prandtl number was 
taken as unity. To use a different constant for the turbulent 
Prandtl number it is necessary to replace NPn S and x+, in 
these figures, with 

NP, S Xf 
____ 
N PI, f ’ N,,, t 

and N 
PI. t 

values of Prandtl number. The results given by 
Gardner and Kestin for these Prandtl numbers 
are also shown in Fig. 1. At large values of xf 
the series of equation (32) diverges from the 
Gardner-Kestin results. This divergence occurs 
because equation (32) is actually an infinite 
series, and the higher-order-terms [which have 
not been determined for equation (4)] become 
important at these large values of x+. Up to the 
point of divergence, agreement between the two 
curves is excellent, and the doubts expressed in 
reference [9] about the accuracy ofthe Gardner- 
Kestin results at high Prandtl numbers are 
apparently not justified. 

3.1.1.2 Diffusivity profile of equation (8). For 
this diffusivity profile, the values of the constants 
in equation (32) are : 

b = 4; u4 = 2.36 x 10-4; F, = F, = 0; 

F, = -0.5; F, = 0.567 (34) 

The curve obtained from equation (32) for these 
constants is also shown in Fig. 1. Since the value 
of u4 above for Deissler’s diffusivity profile is 
larger than the value of Spalding’s u4 (for a b of 
4) given in (33), the curves given by equation 
(32) for Deissler’s profile might be expected to 
deviate from the LevCque solution sooner than 
the curve for Spalding’s profile. This is seen 
to be the case in Fig. 1. This higher value of u4 for 
Deissler’s profile also reduces the maximum value 
of x+ for which equation (32) is valid. 
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b = 4. K I 0 4, 5 025 

b x 4. n * 0 124 

FIG. 1. S vs. x’ from equations (33), (34) and (36) compared with the Gardner-Kestin results for Prandtl 
numbers of 071,7,100 and 1000. 

3.2 Case where b = 3 in ~~~a~~~~ (2) 
For this case the first five terms in the series expansion of S were found to be: 

+ aJO. A - 0.08971 + (a3)4/3 

x F,[0*65454 A - + (a3)5’3F,[1*03005 A - 0*14715] 

- a:[0*27315 (A - 2j2 + O-53108 (A - 2) - 0.011162 (A - 1) - 1.50740 (Fs + A - 2) 

5’3 - 017227 (F6 - l)(A - 1)] - higher order terms (35) 

where, again, the values of a3, F,, F5 and F,, are 
dependent upon the particular eddy diffusivity 
profile used. The calculations were stopped at 
this point since the half-step check indicated the 
coefficient of the next term would be inaccurate. 

The diffusivity profile of equation (5) has a 
value of b equal to three. For this diffusivity 
profile, with values of K and E equal to O-4 and 
12 respectively, the values of the constants in 
equation (35) are : 

b = 3; a3 = 3.56 x iOe4; F, = l-42; 

F, = 1.54; F, = 1.50 (36) 

The curve obtained from equation (35) for these 
constants is also shown in Fig. 1. The main 
difference in the first few terms of equations 
(32) and (35) is the addition of an (x’/N,,,)~‘~ 
term in equation (35). This additional term 
caused the S-function to deviate from the Leveque 
solution at smailer values of x+ for Spalding’s 
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eddy diffusivity profile with a b of three than for 
his profile with a b of four. This effect is seen in 
Fig. 1. It is interesting to note that Deissler’s 
profile [equation (8)], with a b of four, stays 
fairly close to the b = 3 profile. In fact, for a 
Prandtl number of seven, they are nearly identi- 
cal. 

3.3 Discussion and Comparison 
with Experiments 

Van Shaw [lo] has obtained experimental 
values of 3 for the analogous problem of electro- 
chemical mass transfer in a tube. He presented 
data for a large range of Reynolds numbers 
(NRe,J and tube lengths for a fluid with a 
Schmidt number of 2400. These results are 
shown in Fig. 2. The 3 curves shown on the 
figure were obtained, for the diffusivity profiles 
used in this study [equations (33), (34) and (36)], 
from the relationship 

(37) 

The right-hand asymptote for these curves has 

been estimated from equation (13), and the 
intermediate region has been drawn freehand. 

Recently Schiitz [ 1 l] obtained local experi- 
mental values of S for a fluid with a Schmidt 
number of 2170. Like Van Shaw, Schlitz also 
used the electrochemical technique in a tube and 
obtained results for NRe,d between 5000 and 
50000; however, data for NRe,d of less than 
20000 have been omitted from Fig. 3 since 
experimental evidence (e.g. reference [ 121) indi- 
cates that the velocity profiles are dependent 

upon NRe, d for N,,, d of less than 20000. Curves 
of S have been plotted from equations (33), (34) 
and (36) for low x+ values; the asymptotic values 
have again been estimated from equation (13) ; 
and the intermediate region has been drawn 
freehand. 

In Fig. 2 it is seen that Van Shaw’s experi- 
mental data fall below the LevCque solution in 
the low L+ region, and in Fig. 3 Schiitz’s data are 
above the Levtque solution in this region. These 
small discrepancies could be caused by many 
things (e.g. electrode edge effects, small errors in 
determining the Schmidt number, etc.) and are 
indicative of the difficulty encountered in 

----- 
b = 4. K - 0.4, E = 9.025 
b = 3, K = 0.4. E = 
b 4, 

12.0 
= n = 0.124 

FIG. 2.3 VS. L+ from Van Shaw’s experimental data [lo] and theory. 
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Equctm Diffuwvlly constonrs I 
profile by 

- ~ - 133) Spolding C51 b = 4, X = O-4, E = g-025 -- 
-----_(36) Spolding (51 b G 3, K = 0.4, E I 12.0 
---_-_ (341 Deissler C63 b = 4. n = 0.124 

0 (11) LevGque C81 
00 

0.4 

4 6 8 Id 2 4 6 8 Id 2 

X+ 

FIG. 3. S vs. x ’ from Schiitz’s experimental data [ 11 J and theory. 

measuring mass-transfer (or heat-transfer) rates 
at low values of x+ (or L+). Even though it is 
likely that small errors exist in the experimental 
data, it is evident from Figs. 2 and 3 that Spald- 
ing’s diffusivity profile with a b of four [equation 
(4)]-the lower chain-dotted curve in both 
figures--does not fit the experimental data. The 
other two curves, representing Spalding’s pro- 
file for a b of three [equation (5)] and Deissler’s 
profile [equation (8)] both fit the experimental 
data reasonably well. 

4. SUMMARY 

An analytical expression has been found for 
the local heat-transfer to a steady, uniform- 
property turbulent boundary layer from the 
initial portion of an isothermal section of a 
smooth flat plate downstream of a step-wise 
discontinuity in wall temperature. These results 
are expressed in the form of S(Np,, x ‘) and are 
valid for cases where the diffusivity profiles can 
be expressed in the form of a power series in u+. 

In reference [9] the accuracy of the Gardner- 
Kestin results was questioned. The results of 
the present study were compared with those of 
Gardner and Kestin and excellent agreement was 
obtained, indicating that the doubts expressed 
in reference [9] were not justified. 

Published mass-transfer data (for fluids with 

Schmidt numbers greater than 2000) were used 
to determine the best value of the coefficient ah 
for the eddy diffusivity profile in equation (2). 
For a value of b of four, Deissler’s diffusivity 
profile (a4 = 2.36 x 10-4) fits the data quite 
well; correspondingly, the values of S obtained 
using the diffusivity profile in equation (4) 
(a4 = 4.73 x 10e5) are low at high x+. Equation 
(5) gives a good fit to the data if values of K and 
E of 0.4 and 12 are used (i.e. a3 = 3.56 x 10m4). 
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~eter~~~ut~~~ uf the ~~~~~~~~~ ki;rfties of K 
Consider the case where b in equation (2) is four. 3y equatirig ~e~cien~s of ZB in equation 

the following total differential equations are obtained. 

@& •f- ;ski, - ; v@*, + (A -2)~4~~~~-i)~~~=~ (I-I) 

Y2 S 
og,, + 3 e;,, - j ve,,Hj “i- F,(A - 2) v%b’ + SF&d - 1) vv; = 0 (I-2) 

a;+;@$ - 2&, + F,(A - 2) v69;; + W&4 - I) v%&* = 0 (I-3) 

V2 
eYf3 +" 3 e;,, - iveT13 -t 8x4 - 2) Y’@$ + W,(A - 1) v68b = 0 (I-4) 

Y2 8 
egi3 ^I- -?I 8’s,, - 3 Veg,3 -+ (A - 2) v40q, + 4(~ - I) v3e:13 + [F~(A - 2) - (2~ - 3)-j V*B~ 

+ 8&d - IgF’, - r*sj v’& = 0 (I-5) 

For large Prandtl numbers, 

-. 

where tke 8, terms in equatjons (I-Q-g-.9) are functions of v and Pnmdtl number. 3y s~~~osjtion 
it is possible to obtaiti a new set of total differential equations which are independent of Prandtl 
number. Consider 

v2 
9%/S, i + -Yj- o&5* 1 

4 
- j vp4f3y$ + v4e;; = 0 (I-10) 
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6.2 
V2 4 

+ 3 (P&, 2 - 3 v(pb13, 2 + 4v3eb = 0 (I-l 1) 

then 

and 
e4,3 = (A - 2) CP 4/3. 1 + (A - 1) (P4/3,2 (I-12) 

ok,, = (A - 2) d/3.1 + (A - l) d/3.2 (1-13) 

where the cp terms are functions of v only. The values for the cp’ terms at the wall (u+ = 0) can be 
determined by solving equations (I-10) and (I-l 1) using finite difference techniques. Then the values 
of 0: at the wall can be obtained as a function of Prandtl number only. 

Equations (I-2)-(1-9) can be treated the same way giving equations similar to (although more 
complex than) equations (I-10)-( I-13). 

RksumC-On a trouve une solution sous forme de sCrie de 1’Cquation aux d&iv&es partielles paraboliques g 
laquelle obtit le transport de chaleur & partir d’une paroi lisse vers une couche limite turbulente permanente 
et d propriMs physiques constantes. La solution est valable pour la partie initiale de la paroi immbdiate- 
ment en aval d’une discontinuitC en tchelon de tempkrature par&ale. L’tquation aux d&iv&es partielles 
est celle de la tempirature dans fluide dont le nombre de Prandtl est plus grand que 0,5, lorsqu’un 
profil de vitesse universe1 existe partout oh le gradient de tempbrature est appr&ciable. Pour obtenir une 
solution de I’tquation SOUS forme de sbrie, les diffusivitks thermique et cinematique ont ttt &rites chacune 
sous la forme d’une skrie en puissances de u+. Une expression g&&ale a CtC utilisk pour la strie en puis- 
sances qui peut &tre modifite facilement afin de s’adapter B plusieurs profils de diffusivitt conseilks dans 
la litterature. Comme exemple de cette souplesse d’emploi, des calculs ont ttC effect&s (pour plusieurs 
nombres de Prandtl) avec trois profils de diffusivitb courants. Quelques coefficients de u+, dans la strie 
en puissances de la diffusivitk ont tt6 obtenus par comparaison des solutions de l’tquation aux dtrivtes 

partielles avec les rCsultats expCrimentaux publiCs rCcemment. 

Zllsnmmenfpssung-Fiir die parabolische partielle Differentialgleichung des Wlrmeiiberganges von einer 
glatten Wand an eine stationLre turbulente Grenzschicht gleichmlssiger Stoffeigenschaften wurde eine 
Reihenliisung gefunden. Diese L6sung gilt fiir den Anfangsteil der Wand unmittelbar stromabwarts einer 
stufenfijrmigen DiskontinuitIt der Wandtemperatur. Die Differentialgleichung gibt die Temperaturver- 
teilung wieder in einer Fliissigkeit mit einer Prandtl-Zahl grdsser als 0,5, soweit bei merklichem Tempera- 
turgradient in der Fliissigkeit ein universelles Geschwindigkeitsprofil vorhanden ist. Urn eine Reihenliisung 
de; Differentialgleichung zu erhalten wurden die Koeffizienten des turbulenten Energie- und Impulsaus- 
tausches in Form einer Potenzreihe in uf ausgedriickt. Fiir die Potenzreihe wurde eine allgemeine Form 
gewlhlt urn sie zur Anpassung an viele in der Literatur empfohlene Austauschprofile modifizieren zu 
kannen. Als Beispiel fiir die Flexibilitiit wurden Berechnungea (fiir verschiedene Prandtl-Zahlen) mit drei 
oft verwendeten Austauschprofilen durchgefiihrt Einige der Koeffizienten von I(+ in der Austauschpotenz- 

reihe wurden aus Vergleichen der Liisungen der Differentialgleichungen mit kiirzlich veriiffentlichten 
Versuchswerten abgeleitet. 

AEHOTIII~ST-_AJIH napa6onwqecKoro ~~@$0peHIJWIbHO~O J'paBHeHIlR B 93CTHbIX IlpO- 

EIBBO~H~X,O~I1CbIBaH)qerO IIepeHOCTC!IIJIa OT IYIaAKOti CTeHKH K CTa~KOHapHOMyTyp6yneHT- 

HOMY ~O~~3HIl~HOM~C~OloCO~HO~O~HblM~CBO~CTBPMH,H3~~0HO~~lu0HM3M~TO~OM p33JIOW- 

IIIlR B PJl& Pf?IIEHtre CIIpaBe~JIMBO AJlH HaYaJIbHOI.0 J'WCTKa CTeHKU BAOJlb II0 IIOTOKJ', 

KawiKaR c TO~KH cTyneHsaTor0 paapbtsa TemepaTypbI cTeKKu. &i@4epeHqKanbKoe ypamie- 

Hxe onnchn3aeT pacnpeaeneHae TeMnepaTypM B H(IIRK~CTEI (Pr > 0,5) npH Hannww B 

nocnefiseti yKnsepcanbHor0 npo*Knn c~opoc~n TaM, rAe aMeeTcn 3aMeTnbIB rpaweHT TeMne- 

PaTypbI. ,&IR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

B PHA K03$$Wi~HeHTbl AII$$9'3IIH TeIIJIa II KOJIHYeCTBa ABHHCG'HHFI IIpeHCTaBJIeHbI B BllAe 

cTeneHHor0 pRAa no u+. EWI BURT 06~1~~ltl BKA cTeneKKor0 pfffla, ~0~0pb1lt MOWHO nerK0 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ peKOMeHAyeMUX 

B nKTepaType. B KaqecTBe npfimepa nposegew pacY&r%J (npn paawx anavemiflx sncen 

npaHATJIFI) AJIFI T@X 06bIVHO HCIlOJIb3J'eMbIX IlpO@HJIeti ~l+$y3Wl. HeKOTOpbR KO3$+i- 

IJAeHTbI U+ B CTenE!HHOM AH@@y3MOHHOM PHJ&y BIdBeAeHbI C IIOMOqbKI CpaBHeHElR peIW?HIlti 

J&Kd&W+HlJPElJIbHOrO YpaBHeHHR C HeAaBHO OIly6JIHKOBaHHblMH 3KClWpHM0HTaJIbHbIMH 

APHHIJMH. 


