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Abstract—A series solution has been found to the parabolic partial differential equation governing heat
transfer from a smooth wall into a steady, uniform-property turbulent boundary layer. The solution is
valid for the initial portion of the wall immediately downstream of a step-wise discontinuity in wall tem-
perature. The differential equation represents the temperature distribution in a fluid, with Prandtl number
greater than 0-5, when a universal velocity profile exists in the fluid wherever the temperature gradient is
appreciable. To obtain a series solution to the differential equation, the diffusivities of heat and momentum
were each expressed in the form of a power series in u*. A peneral form was used for the power series
which can be easily modified to fit many of the diffusivity profiles recommended in the literature. As an
example of this flexibility, computations were made {for several Prandtl numbers) for three commonly-
used diffusivity profiles. Some of the coefficients of u* in the diffusivity power series have been deduced by
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NOMENCLATURE
a constant {equation 2});
4 constant [=Np/Np, | (equation
17
a constant {(equation 2);
a constant {equation 25);
local drag coefficient = 215/(pud)]
{equation 10);
a constant {equation 25);
a constant {(equation 4);
a constant (equation 15);
a constant {equation 2);
a constant {equation 4};
length of heat- {or mass-) transfer
section;
non-dimensional form of L {equation
37);
laminar Prandt] number (equation 3);
Reynolds number based on pipe
diameter;
turbulent Prandt! number (equation
3);
laminar Schmidt number;
Stanton number {equation 10};
= Ng, Np,/\Jlc,/2) {equation 10);
defined by equation (37};

comparison of the solutions of the differential equation with recently published experimental data.

t, temperature [ °C];

u, velocity in x-direction [m/h];

ut, =u/1s/p)t (equation 1);

X, distance along the wall from the
leading edge [m];

x*,  non-dimensional distance along the
wall [= [ /(c;/2)(pug/p) dx] (equa-
tion 1);

v, perpendiculardistancefromwall[m];

yt, = y(tgp)t/u (equation 6);

Z, =x" /Ny, (equation 18).

Greek symbols

g, non-dimensional effective conducti-
vity {equation 1};

el non-dimensional effective viscosity
{equation 1};

7, =a}®u*) (equation 14);

0, Ef_:wfi (equation 1);

te — ts

u, molecular viscosity [kg/mh] (equa-
tion 21};

¥, =yZ 173 (equation 21);

o, density [kg/m®];
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T, shear stress in boundary layer
[ke/mh2];
o, dimensionless form of temperature

(equation 1-10).

Subscripts
G, refers to conditions in bulk of fluid
stream ;
S, refers to conditions in fluid immedi-

ately at the wall.

1. INTRODUCTION

1.1 The Problem

THE PRIMARY purpose of this paper is to de-
velop an exact analytic expression for the heat
transfer from an isothermal spanwise strip on a
smooth wall to a steady, uniform-property
stream ; a universal velocity profile is assumed to
exist everywhere in the fluid where the tempera-
ture gradient is appreciable. A series method of
solution is used. The expression obtained by this
method for the local heat transfer depends on the
relationships which are postulated between the
velocity, and the eddy diffusivities of heat and
momentum. Use of specific forms of these rela-
tionships in the analysis, followed by compari-
sons of the final solutions with experimental
data, permits information about the correct
forms of the diffusivity relationships to be ob-
tained.

1.2 Description of Basic Equations
used in the Analysis
1.2.1 The parabolic partial differential equation
The parabolic partial differential equation
governing the temperature near the wall in a
turbulent boundary layer was shown in refer-
ence [1] to be:

80 1 @ (& a0
Frei e W P m

where ut, x*, &}, &, and 0 are respectively the
dimensionless measures of: velocity, distance
along the wall, effective viscosity, effective con-

ductivity, and temperature. In developing equa-
tion (1), it was necessary to assume that a uni-
versal velocity profile existed at all points in the
fluid where the temperature gradient was appre-
ciable.

1.2.2 The diffusivity profiles

1.2.2.1 General form. For the method of solu-
tion of equation (1) used in this paper, it is
necessary to assume that the diffusivities of
momentum and heat can be expressed asa power
series in u*. Specifically,

8: = 1 + ab (u+)b + ...+ ab+k (u+)b+k
+ (2)
1 1
- + 3
o NPr+ NPr.t{gu } ( )

where the g, , , terms are constants, any of which
may be zero.

Hinze [2] reported that Reichardt [3] and
Elrod [4] showed there are theoretical reasons
against b in equation (2) being less than three if
the shear stress varies along the wall, and four
if there is no such variation. For this reason the
minimum value of b used in this study will be
three.

1.2.2.2 Spalding’s diffusivity profiles. Two eddy
diffusivity profiles were suggested in reference
[5], one for a value of b in equation (2) of 3, and
the other for b = 4. For b = 4, the recommended
profile was

4
ef =1+%{(KZ!) + ...
+\N
(K:]i‘) .}(N=4,5,6,...) 4

For b = 3, the eddy diffusivity profile recom-
mended in reference [5] was:

K ((Ku*)?
+ —_— J— -
&g =1+ E{ 3

(Ku*)"

N ..}(N=3,4, 5..) (5

In equations (4) and (5) K is a constant, usually
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taken to be about 0-4. E is another constant
having a value of the order of magnitude of 10.

1.2.2.3 Deissler’s diffusivity profile. In reference
[6] Deissler defines a velocity profile by means
of an integral equation

ut =

y+

dy* (
1+ nu*y*(l — exp[—n?uty*])

6)
0

where the recommended value of n is 0-124. This
equation can be integrated to give a power series
mu*.
n4(u+)5 nﬁ(u+)7

5 14

+25nwtyY —.... (0

y+=u++

Equation (7) can now be differentiated to
give a diffusivity profile in the form of a power
series in u™ (since &7 = dy*/du*). This expres-
sion is:

ef =14 (mu*)* — Hnu™)®

+ B — ... (8)

1.2.3 The boundary conditions
The boundary conditions on equation (1) for
our problem are:

6=0 at u* =0

=1 at u* >0
6=1 at u™ =uf

and all x*
and x* =09
and x* >0

We shall be particularly concerned with the
prediction of local surface heat-transfer rates;
these may be connected with the solution of
O(x*, u*) via the S-function [1, 7] which is
defined by:

—_ NSt NPr
— Jley/2)

1.3 Relation to Previous Work
The solution of the problem considered in
this paper has two asymptotes. The first is valid
for small x* where all changes in the tempera-
ture profile are confined to the laminar sub-layer.

= — ﬂ (10)

¥
5u ut =0

These conditions reduce the problem to the one
first solved by Levéque [8]. In terms of the S-
function the Levéque solution is:

x+ >— 1/3
NPr

S = 0-53835 <

(11)

The second asymptote is valid for large values
of x* and large Prandt]l numbers. Deissler [6]
gave a form of this solution which fitted his par-
ticular eddy diffusivity profile. In terms of the

S-function, Deissler’s solution is:
S = 01116 NLA. (12)

This solution was generalized in reference [9],
and gives

_ (@N p,)'"" sin (n/b)
B n/b

where g, and b are from equation (2).

Gardner and Kestin [7] solved equation (1)
on a digital computer for the constant wall
temperature case using the Schmidt method of
step-by-step integration. Their solutions were
for the eddy diffusivity profile of equation (4)
with values of K and E of 04 and 9025 re-
spectively. They presented numerical results for
Prandt] numbers of 0-71, 1, 7, 30, 100 and 1000.

S (13)

2. METHOD OF SOLUTION

2.1 Definitions
Let

y = aiuty

Fyoop = ab+k/[a§:b+k)/b]

(14)
k=0,1,2,....) (15

ie.
F, =1 (16)
N
A= (17)
NPr,t
x+
Z = (18)
NPr,t

2.2 Modification of equation (1)
With the definitions given above, equation (1)
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can be modified to
o0 _ 1
0Z v

~

{D+M"m¢
2
+ Fpoy(Ad = 29 4 ]ig»
dy Nm

+ [B(A — D)yt + Fypylb + 1)

o0
x{A—-Dy¥+ ... ]+
( )7y ] 8}}
Let us now suppose that § can be expressed in
the form of a series,

0=6,+ ) 0,27

n>Q

(20)
where the 8,’s are all functions of v only, where
v=yZ o3 2D

then equation (19) becomes a total differential
equation:

vYn@,Z"=[1+ (4 -2z

~

4 FppqA — 290120083 4
2

x [0 + ¥ 0:2"] +[Y3— + b(A — 1)

x WIZM3 L Fo b+ 1A — 1)

x VWZOT R 4 ] [0 + Y 6,27

r(22)

J

The prime in this equation stands for dif-
ferentiation with respect to v.

Equation (22) can be solved by the method of
equating coefficients.

The boundary conditions for equation (22)
are:

=0 at

v=0}
-1 as v—

2.2.1 Coefficient of Z°. For this term, equation
(22) becomes:

(23)

2
0+ g, = 0.

3 (24)

This equation can be solved exactly, and gives

0 = C | [exp {—v¥/9}]dv + B. {25)
0

From the boundary conditions (23), B is zero,

and
1

T exp [—v*/9] dv
0

C = = (53835. (26)

Therefore,
o = 0:53835 exp [ —v¥/9].

This is the Levéque solution referred to above.

27)

222 Other coefficients. The boundary con-
ditions on 6, for non-zero values of n, become

@=0atv=0}
V= 0

It can be shown that the only values of n for
which 6, and all of its derivatives are not zero,
are

28)
f,—0 as (

k=0123...) (29

Thus, from equation (19), the series expansion
for 8 becomes

0 = 80 + 81,[3Zb13 + ...+ 8(b+k};32(b+k)f3

+ ... {30)
and from equation (9)
dv dv
S =0, 0,23 —
Odu+ ut =0 + b3 du+ 4t =0

dv

+ .+ 92,,+k,,32<"‘°"”3d—+ + ... (3D
U |,+=0

The details of the method used to determine the
values of 0,3 are given in the Appendix.

3. RESULTS
Equations in the form of equations (I-10) and
(I-11) were solved on a digital computer using
step-by-step integration and the results were
checked by repeating the calculations with halved
steps.

3.1 Case where b = 4 in Equation (2)
For this case the first eight terms of the series
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solution for S(x*, Np,, Np, ,) were found to be:
+

pY
S = 0-53835 (Nh
+

+ a3/* F5[103005 4 — 0-14715] (;

Pr,

-1/3 Xt
> + a,[0:65454 A — 0-10909] <N )

4/3 X+ 5/3
) + (ag)*? Fg[1:7227 A — 02153] (N )

Pr

Pr,

— al[0799 (4 — 2)* + 1514 (4 — 2) + 0244 (A ~ 1) + 0-50186 {Fg(Ad — 2) — 24 — 3)}

+

— 10-8948 (F5 — 1)(4 — 1)]( ]’:]
Pr

x+

— (aq)*’*(0-75457) A%F <N

Pr,

>7/3 — (a,)°/4(2:7247) A%F, (

3 3 3f ¥
2.
) + a;(2:83) A4 (N

x+ 8/3
NPr)
11/3
> + higher order terms (32)

Pr.

+

where the values of a4, Fs, Fg, and Fy [defined
by equations (2), (15) and (16)] are dependent
upon the particular eddy diffusivity profile
used. The halved-step check indicated that the
0244 (A — 1) term contained in the coefficient
of the (x*/Np,)"/? term of equation (32) was only
accurate to two per cent. Since this term is small
for large A (i.e. large Np /Np, ,), the calculations
were continued giving the coefficients for
(x*/Np,) to the 8/3,9/3, and 11/3 powers. These
coefficients are strictly valid for large Prandtl
numbers only.

3.1.1 Values of the constants in equation (32) for
various diffusivity profiles

3.1.1.1 Diffusivity profile of equation (4). Gard-
ner and Kestin [7] used the diffusivity profile of
equation (4) with values of K and E equal to 0-4
and 9-025 respectively ; for comparison, the same
values will be used here. These, with equations
(2), (15) and (16), imply:

b=4;a, =473 x 1075, F5 = 0:965;
Fg = 0776; Fg = 0322 (33)

The S-function obtained by using these constants
in equation (32) is shown in Fig. 1* for several

* In all of the figures the turbulent Prandtl number was
taken as unity. To use a different constant for the turbulent
Prandtl number it is necessary to replace Np,, S and x*, in
these figures, with

Np, S *

d X
s an
NPr't NPr,t NPr,t

values of Prandtl number. The results given by
Gardner and Kestin for these Prandtl numbers
are also shown in Fig. 1. At large values of x*
the series of equation (32) diverges from the
Gardner—Kestin results. This divergence occurs
because equation (32) is actually an infinite
series, and the higher-order-terms [which have
not been determined for equation (4)] become
important at these large values of x*. Up to the
point of divergence, agreement between the two
curves is excellent, and the doubts expressed in
reference [9] about the accuracy of the Gardner—
Kestin results at high Prandtl numbers are
apparently not justified.

3.1.1.2 Diffusivity profile of equation (8). For
this diffusivity profile, the values of the constants

in equation (32) are:
b=4; a, =236 x 107%;
F6 = -0'5;

FS =F7 =0;
Fy = 0567 (34)

The curve obtained from equation (32) for these
constants is also shown in Fig. 1. Since the value
of a, above for Deissler’s diffusivity profile is
larger than the value of Spalding’s a, (for a b of
4) given in (33), the curves given by equation
(32) for Deissler’s profile might be expected to
deviate from the Levéque solution sooner than
the curve for Spalding’s profile. This is seen
to be the case in Fig. 1. This higher value of a, for
Deissler’s profile also reduces the maximum value
of x* for which equation (32) is valid.
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Eguation

o} + $ +
Diffusivity Constants
profile by
Spolding = 4,
Spoiding (5] & = 3,
Deissler 6 & = 4,
Spolding (51 4 = 4
{N.B. This curve
Levique I8

PEY
—+

(51 = 9025
= 20

FiG. 1. § vs. x* from equations (33}, (34) and (36) compared with the GardnerKestin results for Prandtl
numbers of 0-71, 7, 100 and 1000.

3.2 Case where b = 3 in Equation (2)
For this case the first five terms in the series expansion of S were found to be:

x")‘
= 0-53835
5 = 053635

Pr

x+

NPr

x F[0:65454 4 ~ 0-10909](

-1/3 x
) + a,[04486 A — 0-0897] ( N

) + (a3)°PF5[1:03005 4 — 0‘14715](

.+

2/3
) + (as)*?

Pr

x+ )4/3
NPr

— a3[027315(4 — 2)* + 0-53108 (4 — 2) — 0011162 (4 — 1) — 1-50740 (Fs + A — 2)

— 017227 (F¢ — 14 — 1)] (N

x*

5/3
) — higher order terms  (35)

Pr

where; again, the values of a3, F, Fs and Fg, are
dependent upon the particular eddy diffusivity
profile used. The calculations were stopped at
this point since the half-step check indicated the
coefficient of the next term would be inaccurate.

The diffusivity profile of equation (5) has a
value of b equal to three. For this diffusivity
profile, with values of K and E equal to 0-4 and
12 respectively, the values of the constants in
equation (35) are:

b=3; a; =35 x 107*;, F, = 142;

Fs=154; F¢ =150 (36)
The curve obtained from equation (35) for these
constants is also shown in Fig. 1. The main
difference in the first few terms of equations
(32) and (35) is the addition of an (x*/Np,)*"?
term in equation {(35). This additional term
caused the S-function to deviatefrom the Levéque
solution at smaller values of x* for Spalding’s
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eddy diffusivity profile with a b of three than for
his profile with a b of four. This effect is seen in
Fig. 1. It is interesting to note that Deissler’s
profile [equation (8)], with a b of four, stays
fairly close to the b = 3 profile. In fact, for a
Prandtl number of seven, they are nearly identi-
cal.

3.3 Discussion and Comparison
with Experiments

Van Shaw [10] has obtained experimental
values of § for the analogous problem of electro-
chemical mass transfer in a tube. He presented
data for a large range of Reynolds numbers
(Nge,s) and tube lengths for a fluid with a
Schmidt number of 2400. These results are
shown in Fig. 2. The § curves shown on the
figure were obtained, for the diffusivity profiles
used in this study [equations (33), (34) and (36)],
from the relationship

1

S==

(37)

The right-hand asymptote for these curves has

423

been estimated from equation (13), and the
intermediate region has been drawn freehand.

Recently Schiitz [11] obtained local experi-
mental values of S for a fluid with a Schmidt
number of 2170. Like Van Shaw, Schiitz also
used the electrochemical technique in a tube and
obtained results for Ng, , between 5000 and
50000; however, data for Ng, , of less than
20000 have been omitted from Fig. 3 since
experimental evidence (e.g. reference [12]) indi-
cates that the velocity profiles are dependent
upon Np, , for Ng, 4 of less than 20000. Curves
of S have been plotted from equations (33), (34)
and (36) for low x* values ; the asymptotic values
have again been estimated from equation (13);
and the intermediate region has been drawn
freehand.

In Fig. 2 it is seen that Van Shaw’s experi-
mental data fall below the Levéque solution in
the low L' region, and in Fig. 3 Schiitz’s data are
above the Levéque solution in this region. These
small discrepancies could be caused by many
things (e.g. electrode edge effects, small errors in
determining the Schmidt number, etc.) and are
indicative of the difficulty encountered in

60 + t +——+ + + —+— t t +—t—
Equation  Diffusivity Constants
profile by
Tl mew  spmisnfne
——— aldin ] =3, K=04, F =120 I
R S~ ——— (38)  DBéissler 1] -2 n:01%
" () Levéque [8]

. 4

2:01
5

10t +
o8+ +
061 +

0

L+

FiG. 2. § vs. L* from Van Shaw’s experimental data [10] and theory.

28
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4 + + $ + + + + + 4 4 + + + } +
Equotion Ditfusivity Constants
profile by
8 — — 133 Spaiding [B1 6 =4, A = 0-4, £ = 23025 T
] 3% Spolding [51 & = 3. K = 04, £: 120
______ {34) Deissler (8] b =4, n = 0124 T
ool (1 Levéque  [B] L
s o, NS‘: = 2170
Ot
4 s 4
-
08+ = o N i+
il R B o o ARy =y B G Ol
~N
o6+ - ;e
4 \\\\ / -+
o4+ +
+ -+ + + + + + t + + + + H t + “
4 6 8 if 2 4 s 8 10° 2 4 & 8 (0

FiG. 3. § vs. x* from Schiitz’s experimental data [11] and theory.

measuring mass-transfer (or heat-transfer) rates
at low values of x* (or L*). Even though it is
likely that small errors exist in the experimental
data, it is evident from Figs. 2 and 3 that Spald-
ing’s diffusivity profile with a b of four [equation
(4)]—the lower chain-dotted curve in both
figures—does not fit the experimental data. The
other two curves, representing Spalding’s pro-
file for a b of three [equation (5)] and Deissler’s
profile [equation (8)] both fit the experimental
data reasonably well.

4. SUMMARY

An analytical expression has been found for
the local heat-transfer to a steady, uniform-
property turbulent boundary layer from the
initial portion of an isothermal section of a
smooth flat plate downstream of a step-wise
discontinuity in wall temperature. These results
are expressed in the form of S(Np,, x*) and are
valid for cases where the diffusivity profiles can
be expressed in the form of a power series inu™.

In reference [9] the accuracy of the Gardner—
Kestin results was questioned. The results of
the present study were compared with those of
Gardner and Kestin and excellent agreement was
obtained, indicating that the doubts expressed
in reference [9] were not justified.

Published mass-transfer data (for fluids with

Schmidt numbers greater than 2000) were used
to determine the best value of the coefficient a,
for the eddy diffusivity profile in equation (2).
For a value of b of four, Deissler’s diffusivity
profile (a, = 236 x 107%) fits the data quite
well; correspondingly, the values of S obtained
using the diffusivity profile in equation (4)
(ag = 473 x 10 %) are low at high x*. Equation
(5) gives a good fit to the data if values of K and
E of 04 and 12 are used (i.e. a; = 3-56 x 1074
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APPENDIX

Determination of the Individual Values of 6,
Consider the case where b in equation (2) is four. By equating coefficients of Z”" in equation{22)
the following total differential equations are obtained.

2
4
s+ %«a;fs = 3 Vs + (A — 205 + A ~ 1) = 0 (1-1)
?3 5 '
2/3 +- _3‘9’5/3 - 3‘“ V05/3 + FS(A - 2) vsﬂg 4 5F5(A h 1) V490 = 0 (1-2)
2
y + %8’3 — 2v8, + Fold — 2)vo0; + 6F 4 — )v, =0 {I-3)
¢ vz 7 7 T 60
73 -+ —3‘971@ - §v9~,;3 + F?(A — 2} v 90 + 7F7(A - I)V 90 = 0 (1-4)
vz 8 ¥ A i Hr
33 + £y 83 — 3 Vg3 + (A — DV + 4A — 1) v30y5 + [Feld — 2) ~ 24 — 3)] %65
+ 8(4 — 1XFy — 1:5)v'8, = 0 (I-5)
For large Prandtl numbers,
2
o + 1’3— 8, — 30, + V05 + 43055 + Fsv30, + SF5v* =0 (1-6)
1] v2 7 IO - ¥ i) I ¥4 124 4 f
103 + “3‘830;3 - "5“"93(39‘3 + V005 + 40, + Fsvi05, + SFsvil s + Fov®8y,

+ 6F6VSQ:;}3 = 0 (I‘?)

2
73 v : Ii "
113+ igs — 3‘""911;3 + vy, + 43053 + Fsv®07 + SF»*0, + Fev054,

3
+ 6Fv*0s3 + Fy'8s + TF 50, = 0 (I-8)

X -+ };“2’93 A 41’34 e "‘483/3 + 4\?36;/3 = { (I-g)
where the 8, terms in equations (I-1)-{I-9) are functions of v and Prandtl number. By superposition
it is possible to obtain a new set of total differential equations which are independent of Prandtl
number. Consider
b vz 4 4
Papt + 5 Pt = 3 VPap, 1 + Y40 =0 (1-10)
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then

and

E. BAKER
" V2 ’ 4 3
Pas3,2 t+ *3“/’4/3,2 - 3"‘!’4/3,2 + 470, =0

043 = (A = 2)Qa3.1 + (A = 1) @yps,

a3 = (A~ 2) 0431 + (A= 1)@y,

(I-11)

(I-12)

(I-13)

where the ¢ terms are functions of v only. The values for the ¢’ terms at the wall (u* = 0) can be
determined by solving equations (I-10) and (I-11) using finite difference techniques. Then the values
of 8, at the wall can be obtained as a function of Prandtl number only.

Equations (I-2)-(1-9) can be treated the same way giving equations similar to (although more
complex than) equations (1-10)-(1-13).

Résumé—On a trouve une solution sous forme de série de 'équation aux dérivées partielles paraboliques &
laquelle obéit le transport de chaleur & partir d’une paroi lisse vers une couche limite turbulente permanente
et & propriétés physiques constantes. La solution est valable pour la partie initiale de la paroi immédiate-
ment en aval d’une discontinuité en échelon de température pariétale. L’équation aux dérivées partielles
est celle de la température dans fluide dont le nombre de Prandtl est plus grand que 0,5, lorsqu’un
profil de vitesse universel existe partout oli le gradient de température est appréciable. Pour obtenir une
solution de I'’équation sous forme de série, les diffusivités thermique et cinématique ont été écrites chacune
sous la forme d’une série en puissances de u*. Une expression générale a été utilisée pour la série en puis-
sances qui peut étre modifiée facilement afin de s’adapter & plusieurs profils de diffusivité conseillés dans
la littérature. Comme exemple de cette souplesse d’emploi, des calculs ont été effectués (pour plusieurs
nombres de Prandtl) avec trois profils de diffusivité courants. Quelques coefficients de u*, dans la série
en puissances de la diffusivité ont été obtenus par comparaison des solutions de I’équation aux dérivées
partielles avec les résultats expérimentaux publiés récemment.

Zusammenfassung—Fiir die parabolische partielle Differentialgleichung des Warmeiiberganges von einer
glatten Wand an eine stationire turbulente Grenzschicht gleichmissiger Stoffeigenschaften wurde eine
Reihenlosung gefunden. Diese Losung gilt fiir den Anfangsteil der Wand unmittelbar stromabwirts einer
stufenférmigen Diskontinuitit der Wandtemperatur. Die Differentialgleichung gibt die Temperaturver-
teilung wieder in einer Fliissigkeit mit einer Prandtl-Zahl grdsser als 0,5, soweit bei merklichem Tempera-
turgradient in der Fliissigkeit ein universelles Geschwindigkeitsprofil vorhanden ist. Um eine Reihenlosung
der Differentialgleichung zu erhalten wurden die Koeffizienten des turbulenten Energie- und Impulsaus-
tausches in Form einer Potenzreihe in u* ausgedriickt. Fiir die Potenzreihe wurde eine allgemeine Form
gewihlt um sie zur Anpassung an viele in der Literatur empfohlene Austauschprofile modifizieren zu
koénnen. Als Beispiel fiir die Flexibilitdt wurden Berechnungen (fiir verschiedene Prandtl-Zahlen) mit drei
oft verwendeten Austauschprofilen durchgefiihrt. Einige der Koeffizienten von u™* in der Austauschpotenz-
reihe wurden aus Vergleichen der Losungen der Differentialgleichungen mit kirzlich veréffentlichten
Versuchswerten abgeleitet.

Anmnoramua—[InAa napa6onnyeckoro RuPdepeHUIMANBHOIO YPaBHEHMA B YacTHRIX IIpO-
H3BOJHHIX, OMUCHIBAIOLIETO IEPEHOC TellJIa OT IJIaJKOM CTEHKHM K CTAallMOHAPHOMY TypOyJIeHT-
HOMY MOTPAHMYHOMY CJIOI0 C OTHOPOXHBEIMH CBO/CTBAMU, HAltleHO pellleHue MeTOROM Pa3Jloe-
und B pAA. PelleHue chopaBefiuBO [AJA HAYAJIBHOTO YYacTKAa CTEHKH BIONL TI0 TOTOKY,
HAYMHAA C TOYKH CTYNEHYATOro pasphiBa TeMmeparypsl creHkn. JAuddepenimaisnoe ypashe-
HUEe ONMMCHBAeT pacHpefeleHMe TeMIepaTypH B kugkocru (Pr > 0,5) mpu manmuuu B
nocyefHelt YHUBEPCAIBHOTO NPOPHUISA CKODOCTH TaM, FAie UMEEeTCA 3aMeTHHIN rPAJMEHT TeMIie-
parypsl. A nogaydeHun peweHnn auPdepeHHATLHOr0 yPABHEHUA ¢ IOMOIIBIO PABJIOKEHUA
B pAx koadpdurmenTn nuddysnu TENAA M KOJANYECTBA [IBMKEHMA NPEACTABIEHH B BHJe
CTeNeHHOro pAfa mo u*. BRI B3AT o0wWMit BHJ CTENEHHOTO PARA, KOTOPHt MOMHO JIETKO
npeo6pas3oBaTh AJIA ONMCAHUA MHOTUX npodnielt koadduuuenton nnpdyasnn, peKOMeHTyeMBX
B guTeparype. B xauectBe mpmmepa mpoBefleHH PacuéTel (NpM DAasHHX 3HAYEHNAX 4MCeN
Ipauaris) anA Tpéx oOMYHO HCOONB3yeMHX npoduielt auddysmu. Hexoropne woaddu-
LMEeHTH u* B cTerneHHOM Mud@ysMOHHOM DAXY BHIBEJEHH C MOMOINBIO CPABHEHMA pelIeHHit
auddepeHINATLHOTO YPAaBHEHMA ¢ HEJAaBHO OMyOJIMKOBAHHHMU dKCIEePMMEHTANbHLIMI
TAHHRIMH,



